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Probabilistic forecasts of wind speed are important for a wide range of
applications, ranging from operational decision making in connection with
wind power generation to storm warnings, ship routing and aviation. We
present a statistical method that provides locally calibrated, probabilistic wind
speed forecasts at any desired place within the forecast domain based on the
output of a numerical weather prediction (NWP) model. Three approaches for
wind speed post-processing are proposed, which use either truncated normal,
gamma or truncated logistic distributions to make probabilistic predictions
about future observations conditional on the forecasts of an ensemble pre-
diction system (EPS). In order to provide probabilistic forecasts on a grid,
predictive distributions that were calibrated with local wind speed observa-
tions need to be interpolated. We study several interpolation schemes that
combine geostatistical methods with local information on annual mean wind
speeds, and evaluate the proposed methodology with surface wind speed fore-
casts over Germany from the COSMO-DE (Consortium for Small-scale Mod-
elling) ensemble prediction system.

1. Introduction. The prediction of wind speed over different time scales is
one of the tasks of weather agencies with the widest range of applications. Ar-
guably, the most important application is wind power forecasting, which is gain-
ing enormous significance with many countries and regions introducing policies to
increase the use of renewable energy: the European Union is aiming (by 2020) to
increase the amount of renewable energy to 20% of the energy supply, with wind
power playing a key role [European Commission (2008), European Wind Energy
Association (2008)]; the U.S. Department of Energy (DOE) describes a scenario
in which wind energy could provide 20% of the U.S. electricity demand in 2030
[U.S. Department of Energy (2008)]; legislation in China declares the usage of
renewable energy a prioritized area in energy development [China Internet Infor-
mation Center (2011)]. Probabilistic wind power forecasts are most useful, as they
permit its optimal management and trading [Pinson (2013)], and one possibility to

Received February 2014; revised May 2015.
1Supported in part by the German Federal Ministry of Education and Research, in the framework

of the extramural research program of Deutscher Wetterdienst (DWD).
Key words and phrases. Continuous ranked probability score, density forecast, ensemble predic-

tion system, numerical weather prediction, Gaussian process.

1328

http://www.imstat.org/aoas/
http://dx.doi.org/10.1214/15-AOAS843
http://www.imstat.org


GRIDDED PROBABILISTIC WIND SPEED FORECASTING 1329

obtain them is by converting probabilistic forecasts of wind speed to power based
on stochastic power curves [Jeon and Taylor (2012)].

Accurate forecasts of wind speed are not only required for wind power predic-
tion, but are crucially important also in connection with severe weather warnings
for the general public. Warnings may be issued either based on wind speed fore-
casts directly or based on forecasts of wind gusts, which can be derived from the
former using gust factors [Durst (1960), Thorarinsdottir and Johnson (2012)]. Fur-
ther applications where wind speed forecasts are required include risk assessment
and decision making in aviation, ship routing, recreational boating and agriculture.
Again, it has been argued that principled risk management should be based on
probabilistic forecasts that take the form of predictive probability distributions for
future quantities or events [National Research Council (2006), Gneiting (2008)].

To provide probabilistic forecasts with lead times between a few hours up to
several days, an increasing number of weather centers are running ensemble pre-
diction systems (EPSs). Instead of a single forecast, several different forecasts
f1, f2, . . . , fm—a so-called ensemble—are generated, with ensemble members
corresponding to model integrations that differ in the initial conditions and/or the
numerical representation of the atmosphere [Palmer (2002)]. Combinations of en-
semble member forecasts are often more accurate than any of these forecasts indi-
vidually, and their spread provides useful information on the flow-dependent un-
certainty. If the forecasts f1, f2, . . . , fm are interpreted as a sample of a predictive
distribution, the corresponding empirical cumulative distribution function (CDF)
can be formed, and probabilistic forecasts can be derived from it. It turns out, how-
ever, that these raw ensemble forecasts are often underdispersive and capture only
part of the forecast uncertainty [Hamill and Colucci (1997), Buizza et al. (2005)].
Moreover, forecasts may suffer from systematic biases due to structural model de-
ficiencies shared among all ensemble members or due to insufficient resolution. To
overcome these deficiencies and provide calibrated, probabilistic forecasts, meth-
ods for statistical post-processing of ensemble forecasts have been proposed. Here,
we focus on approaches that transform the ensemble forecasts into a full predictive
CDF. These methods are appealing because one can derive prediction intervals,
probabilities of threshold exceedance, etc. from the predictive CDFs in a consis-
tent way. Furthermore, for any decision problem that can be expressed in terms of
a scoring function (loss function), an optimal point forecast can be derived from
the predictive distribution using the Bayes rule [Gneiting (2011)].

The common idea of all methods for statistical post-processing is that forecast-
observation pairs from the past can be used to identify shortcomings of the raw
ensemble, and generate predictive distributions that do not suffer from these
shortcomings. Examples of such methods for wind speed ensemble forecasts in-
clude adaptations of the nonhomogeneous Gaussian regression (NGR) approach
[Gneiting et al. (2005)] and adaptations of the Bayesian model averaging (BMA)
technique [Raftery et al. (2005)]. Instead of Gaussian distributions, Sloughter,
Gneiting and Raftery (2010), Courtney, Lynch and Sweeney (2013) and Baran,
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Nemoda and Horányi (2013) use gamma distributions as the building block for
their predictive BMA densities. Thorarinsdottir and Gneiting (2010) use predictive
truncated normal distributions; Lerch and Thorarinsdottir (2013) further extended
this approach and use either truncated normal distributions or generalized extreme
value distributions, depending on whether the forecasts suggest a low or high wind
regime. All of these approaches have been demonstrated to be able to generate cal-
ibrated and sharp predictive distributions, which is the goal in probabilistic fore-
casting [Gneiting, Balabdaoui and Raftery (2007)]. They can be applied either to
stations individually and use only the local wind speed forecasts and observations
as training data, or they can pool data across the forecast domain and estimate a
single set of model parameters that is valid on all locations. Thorarinsdottir and
Gneiting (2010) studied both approaches and found that the local method yields
better results than the regional method, as it allows the post-processing to adapt
to local peculiarities. It entails, however, a new challenge that none of the above-
mentioned articles have dealt with: when forecasts are desired at locations where
no wind speed measurements are available, either the post-processing parameters
or the parameters of the predictive distributions must be interpolated to those lo-
cations. In operational practice, forecasts are usually provided on a regular model
grid, and the interpolation of local forecasts to this grid is referred to as grid-
ding. Kleiber et al. (2011) and Scheuerer and Büermann (2014) have proposed
procedures for the gridding of BMA- and NGR-based probabilistic forecasts for
temperature. In this paper we will do the following:

• compare three different NGR type approaches for probabilistic wind speed fore-
casting based on truncated normal, gamma and truncated logistic distributions;

• adapt the model fitting concept by Scheuerer and Büermann (2014) of splitting
post-processing parameters into local and regional ones, thus achieving a good
compromise between local adaptivity and parsimony of the NGR model;

• study and compare different geostatistical models for the gridding of probabilis-
tic wind speed forecasts, placing special emphasis on the adequate consideration
of spatial heterogeneity and small scale variability of observed wind speeds.

After providing some details on the data used in our study in Section 2, some
exploratory analysis is performed. We briefly review the NGR type approach by
Thorarinsdottir and Gneiting (2010) in Section 3, and propose two alternative
methods that use predictive gamma and truncated logistic distributions, but are
otherwise similar. A description of the corresponding model fitting procedure,
in which the continuous ranked probability score (CRPS) is minimized, is also
given in this section. In Section 4, we address the interpolation problem men-
tioned above, propose a geostatistical interpolation scheme that incorporates in-
formation on local annual mean wind speeds, and use this model for obtaining
gridded forecasts. The performance of the different methods with our data set is
assessed in Section 5, and conclusions are drawn about the optimal training sample
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size, predictive distribution and interpolation scheme, before summing up and dis-
cussing directions for further extensions. Mathematical details about the derivation
of closed-form expressions for the CRPS of gamma and truncated logistic distri-
butions are provided in the Appendix.

2. Data description and exploratory analysis. We consider surface (10 m)
wind forecasts by the COSMO-DE-EPS (Consortium for Small-scale Modelling),
a multi-analysis and multi-physics ensemble prediction system based on the high-
resolution (2.8 km horizontal grid size) numerical weather prediction model
COSMO-DE [Baldauf et al. (2011)]. The COSMO-DE-EPS has been operational
at the German Weather Service (DWD) since May 22, 2012. It was run under the
same conditions in a pre-operational phase since 9 December 2010, consists of
m = 20 ensemble members, covers the area of Germany, and produces forecasts
with lead times up to 21 hours. A new model run is started every three hours;
we use the one initialized at 0000 UTC and study forecasts at 0600, 1200 and
1800 UTC. The current setup of the lateral boundary conditions uses forecasts
of four different global models, while five different (fixed) configurations of the
COSMO-DE model are used for the variation of model physics [Gebhardt et al.
(2011)]. Thus, all 20 ensemble members have individually distinguishable physi-
cal features and are not exchangeable. The COSMO model uses a rotated spheri-
cal coordinate system in order to project the geographical coordinates to the plane
with distortions as small as possible [Doms and Schättler (2002), Section 3.3],
with 421 × 461 equidistant gridpoints in longitudinal and latitudinal direction. We
adopt this coordinate system to calculate horizontal distances in the framework of
our post-processing method.

Both raw and post-processed forecasts are verified against surface wind speed
observations (10-minute average wind speed 10 m above the ground) at 286 sur-
face synoptic observation (SYNOP) stations in Germany. Stations with nonmissing
data on less than 200 days in either 2011 or 2012 have been left out. The station at
Berlin Alexanderplatz has been left out, too, since the magnitude of the observa-
tions at this site suggests that measurements have actually been taken at the top of
the Fernsehturm (TV tower), and hence cannot be considered 10 m wind speeds.
The ensemble forecasts are originally given as the zonal and meridional compo-
nent of 10 m wind vectors, and we take the Euclidean norm of these vectors as
the overall wind speed forecasts and interpolate them to the observation sites via
bilinear interpolation. In this paper, the aim is to forecast local observations rather
than representative averages over model grid cells, and we neglect measurement
errors and take the wind speed observations as the truth.

The gridded high-resolution (200 m horizontal grid size) data of annual mean
wind speeds over Germany, which is used as a covariate in our spatial interpola-
tion scheme in Section 4, was also obtained from DWD. It is constructed based
on measurements at 218 SYNOP stations over Germany during the period from
1981 to 2000, which were adjusted for obstacles, and gridded using the statistical
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FIG. 1. Ensemble forecasts (light gray lines) and observations (red lines) of wind speeds (in m/s)
at 1800 UTC for all days in the year 2011 at Mannheim, Zugspitze and Helgoland.

wind field model described in the European wind atlas [Troen and Petersen (1989),
Gerth and Christoffer (1994)]. Values at the station locations and the COSMO-DE
model grid were derived from this high resolution map using bilinear interpolation.

Figure 1 shows time series of the 20 ensemble forecasts and the correspond-
ing observations at three different locations in Germany. For Mannheim, a city in
southwestern Germany, and Helgoland, a small German archipelago in the North
Sea, the forecasts are generally quite accurate, but the spread of the ensemble
seems a bit low. If the ensemble forecasts and the observation were drawn from the
same distribution, the observation would be contained within the ensemble range
on 19/21 · 100% ≈ 90.5% of all days, which does not quite seem to be the case.
The forecasts at Zugspitze, Germany’s highest mountain (located at the border
to Austria), suffer from a systematic underforecasting bias as a result of incom-
pletely resolved orography by the numeric weather prediction scheme. This illus-
trates why a regional post-processing approach, which assumes constant model
parameters over the entire domain of interest, is usually unable to fully remove
local biases. This need for location-specific post-processing is further underscored
by the scatterplots in Figure 2, which also show that the magnitude of forecast er-
ror varies from one location to another. Furthermore, we note certain differences
in the predictability of wind speeds between different seasons.

3. Forecast calibration at observational sites.

3.1. Predictive distribution models. For the post-processing of wind speed en-
semble forecasts, Thorarinsdottir and Gneiting (2010) proposed an adaptation of
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FIG. 2. Scatterplots of ensemble mean forecasts and observations of wind speeds (in m/s) at 1800
UTC for all days in the year 2011, separately for each season.

the nonhomogeneous Gaussian regression approach by Gneiting et al. (2005) to
nonnegative quantities, replacing normal by truncated normal predictive distribu-
tions N0 with a cutoff (lower bound) at zero. Specifically, given ensemble forecasts
f1, . . . , fm, they define the predictive distribution through

N0
(
μ,σ 2)

, where μ = a + b1f1 + · · · + bmfm and σ 2 = c + dS2.(1)

Here, S2 = 1
m

∑m
k=1(fk −f�)

2 denotes the ensemble variance, and f� = 1
m

∑m
k=1 fk

denotes the ensemble mean. This type of post-processing method that fits a prob-
ability distribution model to model output statistics (MOS) of an ensemble is also
referred to as EMOS. Another post-processing approach based on Bayesian model
averaging [BMA, Raftery et al. (2005)] was proposed by Sloughter, Gneiting and
Raftery (2010). In their example, gamma distributions were found to be a good
model for the conditional distribution of wind speed observations given the fore-
cast. While we prefer the EMOS approach over BMA due to its conceptual sim-
plicity, we also study a variant of (1) that uses predictive gamma distributions

G
(
μ,σ 2)

, where μ = a + b1f1 + · · · + bmfm and σ 2 = c + dS2.(2)

Here, the gamma distribution is parametrized in terms of its mean μ and variance
σ 2, which relate to the shape parameter α and a rate parameter β of the standard
parametrization via α = μ2/σ 2 and β = μ/σ 2. Yet another distribution type for
wind speed observations conditional on ensemble forecasts, the left-censored lo-
gistic distribution, has recently been proposed by Messner et al. (2014a, 2014b).
Left-censoring a distribution at zero entails a positive probability of observed wind
speeds being exactly zero. Truncation at zero, on the contrary, implies that ob-
served wind speeds can be very small, but are never exactly zero. We favor that
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latter perspective and consider, as a further alternative, an EMOS approach based
on truncated logistic distributions

L0
(
μ,σ 2)

, where μ = a + b1f1 + · · · + bmfm and σ 2 = c + dS2.(3)

The parameters μ and σ 2 are the mean and the variance of the logistic distribu-
tion before truncation. The common parametrization employs a scale parameter ς ,
which relates to the variance via σ 2 = π2

3 ς2. The truncated logistic distribution
resembles the truncated normal distribution but has heavier tails (higher kurtosis).
We apply all three models to wind speed forecasts and observations directly, that
is, without any prior transformation of the data.

3.2. Model fitting. All of the predictive distribution models considered here
depend on the parameters a, b1, . . . , bm, c, d which must be estimated based on
training data. This training data usually consists of forecast-observation pairs from
the past, with the exact choice of training days depending on the weather variable
under consideration, the geographic location of the forecast domain, etc. Temper-
ature, for example, has a pronounced seasonal cycle, and often also the associated
forecast error statistics of the NWP model are different in different seasons. In
that case, it is therefore best to use a relatively short rolling training period (i.e.,
typically around 20 to 30 days immediately preceding the forecast day), so that
the fitted parameters can quickly adapt to seasonal changes. The scatterplots in
Figure 2 suggest that for 10 m wind speeds, too, the optimal model parameters
may change over the course of the year, but seasonal differences still seem to be
smaller than differences between different locations. The bias–variance trade-off
that has to be made when choosing the training sample size is therefore likely to
favor longer training periods than those typically used for temperature. However,
even if a training period of, let’s say, 100 days is used for model fitting, estimat-
ing a different set of parameters a, b1, . . . , bm, c, d for each location is prohibitive
in the present case where we have m = 20 nonexchangeable ensemble members
and thus 23 model parameters overall. To compromise between local adaptivity
and stability of the parameter estimates, we therefore adopt a similar approach as
Scheuerer and Büermann (2014), and reparametrize our models (1), (2) and (3) in
such a way that only three parameters are location-specific, while all remaining
parameters are assumed constant over the entire domain. Specifically, if we denote
by μs and σ 2

s the mean and variance parameter of the predictive distribution at
location s, we let

μs = as + bs(w1fs1 + · · · + wmfsm) and σ 2
s = cξ2

s + dS2
s .(4)

Additive and multiplicative bias correction is controlled by the location-specific
parameters as and bs , while w1, . . . ,wm are nonnegative weights that are con-
strained to sum up to one and constant over the entire domain. The underlying
assumption is that biases vary strongly in space (if they are due to incompletely re-
solved orography, over- and underforecasting biases may occur in close vicinity),
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while the relative performance of the different ensemble members depends on the
weather situation rather than the location. In the same way, prediction uncertainty
is described by a local parameter ξ2

s that will be defined below and two universal
parameters c and d that control the scaling and relative contribution of the ensem-
ble variance S2

s . Model fitting is then performed in two steps. First, a simplified
model

μs = as + bsfs�, σ 2
s = ξ2

s , fs� = 1

m

m∑
k=1

fsk,(5)

is fitted separately at each observation location. This model has only three parame-
ters as, bs, ξ

2
s for which reliable estimates can be obtained even with a training data

set of size 30 to 80. The estimated local parameters are then kept fixed, data from
all locations are pooled, and the weights w1, . . . ,wm and variances parameters c, d

of the full model (4) are estimated in a second step. In this step the assumption of
homoscedasticity implied by (5) is relaxed, and nonhomogeneous variances are
allowed. In contrast to generalized linear models, the variance is, however, not re-
lated to the mean, but becomes nonhomogeneous through the use of the additional
predictor variable S2

s , which provides information about the flow-dependent fore-
cast uncertainty. In both model fitting steps, parameter estimation is performed as
in Thorarinsdottir and Gneiting (2010), that is, the model parameters are chosen
such that the corresponding predictive distributions—calculated with the training
forecasts—attain minimal continuous ranked probability score [CRPS, Hersbach
(2000)] when evaluated with the training observations. The CRPS is a proper scor-
ing rule and can be used to rate the sharpness and calibration of a probabilistic
forecast [Gneiting and Raftery (2007)]. For a single predictive cumulative distri-
bution function F and a verifying observation y, it is defined as

CRPS(F, y) =
∫ ∞
−∞

(
F(t) − 1[y,∞)(t)

)2
dt.

CRPS minimization is a robust alternative to maximum likelihood estimation,
which is equivalent to the minimization of the logarithmic score. For the opti-
mization to be computationally efficient, a closed-form expression of the above
integral must be found. For truncated normal distributions, Gneiting et al. (2006)
show that

CRPS(FN0(μ,σ 2), y)

= σ	

(
μ

σ

)−2[
y − μ

σ
	

(
μ

σ

){
2	

(
y − μ

σ

)
+ 	

(
μ

σ

)
− 2

}

+ 2φ

(
y − μ

σ

)
	

(
μ

σ

)
− 1√

π
	

(√
2
μ

σ

)]
,

where φ denotes the PDF and 	 denotes the CDF of the standard normal distribu-
tion. In Appendix A we derive the following expression for the CRPS of a gamma
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distribution with shape parameter α and rate parameter β:

CRPS(FG(α,β), y)

= y
(
2FG(α,β)(y) − 1

) − α

β

(
2FG(α+1,β)(y) − 1

) − α

βπ
B

(
α + 1

2
,

1

2

)
,

where B denotes the beta function. In Appendix B we show that the CRPS of a
truncated logistic distribution with location parameter μ and scale parameter ς is
given by

CRPS(FL0(μ,ς), y)

= (y − μ)

(
2py − 1 − p0

1 − p0

)

+ ς

[
log(1 − p0) − 1 + 2 log(1 − py) + 2py logit(py)

1 − p0
− p2

0 log(p0)

(1 − p0)2

]
,

where p0 = FL(μ,ς)(0),py = FL(μ,ς)(y), and logit(p) = log(p)− log(1 −p). For
the minimization of the average CRPS over all training data, we use the constrained
optimization algorithm L-BFGS-B [Byrd et al. (1995)], which allows us to enforce
the constraints bs,w1, . . . ,wm,d ≥ 0 and c > 0 for all three predictive distribution
models and the additional constraint as > 0 for the gamma distribution model.

4. Interpolation of local predictive distributions. The methods described
in Section 3 permit location-specific calibration of ensemble wind speed forecasts.
Since both local mean and variance parameters μs and σ 2

s depend on site-specific
post-processing parameters as, bs and ξ2

s , we face the challenge of interpolating
the local predictive distributions to nonobservational sites such as the gridpoints of
the forecast model grid. To do that, one can either interpolate μs and σ 2

s directly, or
one can interpolate the model parameters as, bs and ξ2

s , and use them to calculate
μs and σ 2

s according to (4).
In this paper we perform spatial interpolation using a statistical interpolation

method referred to as kriging. This technique is based on the assumption that the
quantity to be interpolated can be considered a realization of a Gaussian random
field (GRF), and its success depends on whether the spatial dependence structure
of this GRF is described appropriately. Figure 3 gives an idea about the prospec-
tive challenges with the interpolation of the different parameters mentioned above.
Although the scale and the units are different, the plots in this figure help us iden-
tify patterns in the spatial structure of the depicted parameters. The intercept pa-
rameter as , for example, varies rather smoothly in Northern Germany, and spatial
correlations could be modeled well as a function of the geographical distance. In
the mountainous regions in Central and especially Southern Germany, however,
substantial small-scale variability can be observed, which makes it rather difficult
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to find a reasonably simple model for spatial dependence. Erratic small-scale de-
partures from an otherwise smooth spatial trend are even more pronounced with
the slope parameter bs . Its interrelation with as impedes an unambiguous physical
interpretation of these parameters. A large value of as can be indicative of limited
forecast skill when it is accompanied by a smaller value of bs . This is the situation
that we would expect for Mannheim and Zugspitze in spring and summer (see Fig-
ure 2). However, locations with similar forecast skill can still have different values
of as if the order of magnitude of wind speeds at these locations is very different,
which is the case, for example, with Mannheim and Helgoland during the winter
season. A large value of bs can be indicative of good forecast skill but can also re-
sult from an underforecasting bias (e.g., at Zugspitze during winter, see Figure 2).
For wind speed there is no straightforward way to reparametrize equations (1)–
(3) in such a way that bias, forecast skill and order of magnitude of the observed
values can be unambiguously attributed to different parameters. Interpolating the
parameter μs rather than as and bs partly avoids this problem, but small-scale
variations are still an issue that has to be dealt with. With μs having the relatively
straightforward interpretation of being the expected wind speed (up to truncation),
information about local wind speed climatologies can be used to explain regional
and local differences. Such information is available in the form of gridded annual
average wind speeds w̄s over Germany in the reference period from 1981 to 2000.
While μs varies strongly from day to day, large values of μs are much more likely
to be observed at locations where wind speeds are also high on the annual average.
Indeed, the spatial patterns of μs and w̄s in Figure 3 are visually similar, and after
dividing by w̄s , some of the small-scale irregularities of μs are strongly reduced.
Those that are still present (or have even been amplified by the scaling) are often
observed in regions where strong small-scale differences are present also in the
annual mean, for example, near mountain peaks. An additional way of leveraging
the information contained in w̄s is therefore to model an increase of variability
between pairs of locations not just as a function of geographic distance, but also as
a function of their difference in w̄s . To formalize these ideas, we denote by S the
set of all locations within the forecast domain and consider μs, s ∈ S , a realization
of an intrinsic GRF {Zμ(s) : s ∈ S} with generalized covariance function Cμ(s, s̃).
We then study and compare several models for spatial dependence:

(a) Intrinsically stationary Brownian surface plus nugget effect

Cμ(s, s̃) = −θμ,1 · ‖s − s̃‖ + θμ,2 · 1{s=s̃};
(b) Intrinsically stationary fractional Brownian surface plus nugget effect

Cμ(s, s̃) = −θμ,1 · ‖s − s̃‖θμ,3 + θμ,2 · 1{s=s̃}, θμ,3 ∈ (0,2);
(c) Locally scaled Brownian surface plus nugget effect

Cμ(s, s̃) = −θμ,1 · w̄s · w̄s̃ · ‖s − s̃‖ + θμ,2 · 1{s=s̃};



1338 M. SCHEUERER AND D. MÖLLER

FIG. 3. Local post-processing parameters as, bs and log(ξs), and parameters μs and log(σs) of
the predictive distributions for wind speed at all station locations on 3 January 2012, 1800 UTC.
Also shown is the average wind speed w̄s at those locations and rescaled versions of μs and log(σs).

(d) Locally scaled Brownian surface with an added dimension plus nugget ef-
fect

Cμ(s, s̃) = −w̄s · w̄s̃ · (
θμ,1 · ‖s − s̃‖ + θμ,2 · |w̄s − w̄s̃ |

) + θμ,3 · 1{s=s̃}.

In all of these models, 1{s=s̃} denotes the indicator function, ‖s − s̃‖ is the dis-
tance between s and s̃, and the model parameters θμ,1, θμ,2, θμ,3 are constrained
to be nonnegative. Model (a) is our basic model and relatively simple. It has only
two parameters which reflect the relative impact of the Brownian surface compo-
nent and the so-called nugget effect component, which accounts for unresolved
small-scale variability. The corresponding generalized covariance function is con-
ditionally positive definite with respect to the linear function space that contains
the constant functions [cf. Chilès and Delfiner (2012), or Scheuerer, Schaback and
Schlather (2013), for technical details on intrinsic GRFs]. It is closely related to
the exponential covariance function which has an additional range parameter r

describing how fast correlations decay with distance. The generalized covariance
function of model (a) can be viewed as a limiting case when r tends to infinity
and the variance is adjusted such that the local characteristics of the correspond-
ing GRF remain unchanged. In our experiments with the exponential covariance,
model estimates of r were very large on most of the days, and so we decided to use
the more parsimonious Brownian surface model. The Brownian surface model (a)
is a special case of the fractional Brownian surface model (b), which contains an
additional model parameter θμ,3 that controls both fractal dimension of the realiza-
tions and growth rate of the variability between two locations with distance. Thus,
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it offers an additional degree of flexibility, but it still assumes intrinsic stationarity
of Zμ, although the above discussion of Figure 3 suggests that this assumption is
inappropriate. Our next covariance model therefore gets back to the idea of render-
ing μs more homogeneous by dividing it by w̄s . This kind of rescaling is equiva-
lent to describing the spatial correlations of the original parameter by covariance
model (c), which is again based on the very basic Brownian surface model but
becomes nonstationary through scaling. Note the difference in the use of covariate
information compared to Scheuerer and Büermann (2014) who use elevation data
to explain spatial variations in temperature. In their kriging model, the covariate
information is used to define an external drift [e.g., Chilès and Delfiner (2012),
Section 5.7.2], imposing restrictions on the kriging weights that force them to be
consistent with the covariates. Here, the covariates are used for rescaling the inter-
polated variables, which also affects the covariance structure and accounts for the
fact that in regions where μs tends to be large the magnitude of spatial variability
tends to be large as well. As a consequence of rescaling, covariance model (c) is
conditionally positive definite with respect to the linear function space spanned by
w̄s (rather than the constant functions), and this must be taken into account when
setting up the restricted log likelihood and the kriging system (see below).

Our second suggestion from above to leverage the information contained in
w̄s in order to account for the small-scale variability of μs is implemented
in model (d). The two-dimensional index space S is augmented by a further
dimension—the average wind speed dimension—which makes it possible to ex-
plain large differences between locations that are geographically close by, but have
very different wind speed climatologies. Technically, model (d) can be thought of
as being generated by adding a separate, independent GRF (indexed over the value
range of w̄s ) to the 2d Brownian surface. The sum of those two GRFs is then
rescaled with w̄s , and so the covariance function of model (d) is again condition-
ally positive definite with respect to the linear function space spanned by w̄s .

All of the preceding explanations concern the interpolation of the mean pa-
rameter μs , and we still have to specify appropriate models for interpolating the
logarithm (to ensure positivity) of the variance parameter σ 2

s . Figure 3 suggests
that the considerations discussed above also apply to log(σs), and we therefore
consider log(σs), s ∈ S , a realization of an intrinsic GRF {Zσ 2(s) : s ∈ S} with
generalized covariance function Cσ 2(s, s̃), and use the same correlation models
(a)–(d) that were discussed above for the interpolation of μs .

Having specified the stochastic model on which we base our interpolation
scheme, we can use standard techniques from geostatistics such as restricted maxi-
mum likelihood (REML) estimation and intrinsic kriging [cf. Scheuerer, Schaback
and Schlather (2013), and references therein] to estimate the unknown model pa-
rameters and carry out the interpolation. While REML is based on the contestable
assumption of a multivariate Gaussian distribution of the values of μs and log(σs)

at the observations sites, the discussion in Scheuerer, Schaback and Schlather
(2013) suggests that its effectiveness does not depend critically on this assumption.
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FIG. 4. Interpolated predictive mean μ̂s (left), corresponding kriging standard deviation σμ̂,s

(middle) and interpolated predictive standard deviation σ̂s (right) for wind speeds over Germany
on January 3, 2012 at 1800 UTC.

We finally note that interpolation always involves uncertainty, and this is especially
true in the present setting where we face a lot of small-scale variability that makes
interpolation rather challenging. Using the interpolated value μ̂s as the predictive
mean parameter at a nonobservational location s ∈ S instead of the unknown true
value effectively increases the (interpolated) predictive variance σ̂ 2

s by the kriging
variance σ 2

μ̂,s
. Hence, we take the sum of those two terms as the final predictive

variance σ̃ 2
s . The effect of the uncertainty in the interpolation of σ 2

s itself is more
involved and would call for changing the distribution type. Within our interpola-
tion scheme there is no obvious way of dealing with this appropriately, and so we
ignore this source of uncertainty and accept its adverse effect (tails of the predic-
tive distribution at nonobservational sites will typically be too light) on forecast
calibration. In Figure 4 we depict the interpolated fields μ̂s, σ

2
μ̂,s

and σ̂ 2
s for the

1800 UTC forecast on January 3, 2012. Those fields were obtained with covari-
ance model (d) based on the parameter values of truncated logistic distributions
at the observation sites. Owing to the covariate w̄, the interpolation scheme can
anticipate increased values of wind speeds and high forecast uncertainties even at
locations where the neighboring stations alone would not suggest this. Moreover,
it enables sharper transitions at the coastline than would be possible with the basic
Brownian surface model.

5. Data example.

5.1. Wind speed predictions at observational sites. We first consider the sit-
uation in Section 3, where predictive distributions are provided and evaluated at
observational sites only. The three different distribution models are used to cali-
brate ensemble forecasts of wind speeds at 0600 UTC, 1200 UTC and 1800 UTC
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TABLE 1
Average CRPS (in m/s) for the calibrated probabilistic forecasts obtained with gamma (G),

truncated normal (N0) and truncated logistic (L0) predictive distribution models and a training
period of size td. Results are given for 0600 UTC, 1200 UTC and 1800 UTC, the corresponding

CRPSs of the raw ensemble forecasts are 0.941, 0.960 and 0.957. Scores obtained with the
simplified model (5) are given in brackets, the best-performing approach is shown in bold

td = 30 td = 40 td = 50 td = 60 td = 70 td = 80

G, 0600 UTC 0.615 (0.617) 0.611 (0.613) 0.609 (0.611) 0.608 (0.611) 0.609 (0.611) 0.610 (0.612)
N0, 0600 UTC 0.612 (0.614) 0.606 (0.608) 0.604 (0.605) 0.603 (0.605) 0.602 (0.604) 0.603 (0.605)
L0, 0600 UTC 0.612 (0.614) 0.606 (0.608) 0.604 (0.605) 0.603 (0.604) 0.602 (0.604) 0.602 (0.604)

G, 1200 UTC 0.693 (0.698) 0.687 (0.693) 0.684 (0.689) 0.683 (0.689) 0.683 (0.688) 0.682 (0.688)
N0, 1200 UTC 0.693 (0.697) 0.686 (0.690) 0.681 (0.686) 0.680 (0.685) 0.680 (0.684) 0.679 (0.683)
L0, 1200 UTC 0.693 (0.696) 0.686 (0.690) 0.681 (0.686) 0.680 (0.684) 0.679 (0.684) 0.678 (0.683)

G, 1800 UTC 0.685 (0.690) 0.680 (0.685) 0.677 (0.682) 0.676 (0.681) 0.676 (0.681) 0.677 (0.682)
N0, 1800 UTC 0.686 (0.690) 0.679 (0.683) 0.675 (0.680) 0.674 (0.678) 0.674 (0.678) 0.674 (0.679)
L0, 1800 UTC 0.685 (0.689) 0.678 (0.683) 0.675 (0.679) 0.673 (0.678) 0.674 (0.678) 0.674 (0.678)

during the period from 1 January, 2012 to 31 December, 2012. To fit the respec-
tive model parameters, we consider rolling training periods of different lengths,
ranging from 30 to 80 training days. If more than one third of the training data
pairs are missing at a particular location, no model is fitted, and the location is not
considered on that verification day. To get a quick overview over the predictive
performances of the different methods and different training sample sizes, we first
only compare the average CRPS over the verification period. Recall that the CRPS
is a proper scoring rule and evaluates both calibration and sharpness of predictive
distributions, with lower scores implying better performance.

The results in Table 1 show that all post-processing methods yield a significant
improvement in predictive performance over the raw ensemble. The differences
between the three distribution types are very small, but consistent over all forecast
hours and training sample sizes. They suggest that the truncated logistic distribu-
tion yields the same or slightly better results than the truncated normal distribution
and both are somewhat superior to predictive gamma distributions. In all cases, the
dynamical weighting of the ensemble members and the usage of the ensemble vari-
ance as a predictor for the forecast uncertainty yield a slight improvement over the
simplified model (5), which uses identical weights for all ensemble members and
assumes homoscedastic forecast errors. The results confirm our expectations about
the bias–variance trade-off implied by the choice of the training sample size. The
optimal number of training days is around 70, and thus much larger than the values
that are typically used for post-processing ensemble forecasts for temperature. Yet,
it can be observed that initially the scores improve with increasing training sample
size due to increasing stability of parameter estimates. This trend is eventually re-
versed when further improvement in stability becomes negligible compared to the
adverse effects that come with a reduced response to seasonal changes. From now,
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FIG. 5. PIT histograms for predictive gamma, truncated normal and truncated logistic distribu-
tions at 0600 UTC, 1200 UTC and 1800 UTC (from top to bottom).

we will therefore focus on the results obtained with a rolling training period of 70
days.

In order to assess which distribution type yields the best calibration, we cal-
culate the probability integral transforms (PITs) πi := Fi(yi) for predictive CDFs
Fi and observations yi at all locations and all verification days. If the forecasts
are calibrated, each of those PIT values is uniformly distributed on [0,1], and
systematic departures from uniformity are indicative of a lack of calibration [see
Gneiting, Balabdaoui and Raftery (2007) and references therein]. Figure 5 shows
plots of PIT histograms for the three different predictive distribution models and
confirms the conclusions from Table 1. All three approaches eliminate systematic
biases and give a good representation of prediction uncertainty. However, certain
differences can be observed in the tails of those distributions. The tails—especially
the upper one—of the truncated normal distribution model are somewhat too light.
Predictive gamma distributions, on the contrary, give a better fit in the upper tail,
but their skewness causes the lower tail probabilities to be too low. The truncated
logistic distribution model offers a good compromise between the two former: it is
less skewed than the gamma distribution but has higher kurtosis than the truncated
normal distribution, thus giving an adequate fit in both lower and upper tail, and
resulting in almost perfectly flat PIT histograms.

5.2. Wind speed predictions at nonobservational sites. We now turn to the sit-
uation where wind speed predictions are sought at locations where no observations
are available for local calibration. In practice, those would usually be the gridpoints
of the NWP model grid. Here, in order to be able to measure and compare the per-
formance of the different interpolation schemes proposed in Section 4, we proceed
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FIG. 6. Average CRPS values in m/s at the left-out stations obtained through interpolation using
the four different GRF models or obtained by local calibration.

as follows. From the 286 SYNOP stations used in this study we draw 10 random
samples of 50 stations that are left out for verification, with the sampling being
done such as to avoid clusters of left-out stations. At the respective left-out loca-
tions, predictive distributions (here we focus on the truncated logistic distribution
model) are obtained by interpolating the mean and variance parameters of the re-
tained stations, while the local observations are used for verification only. Again,
we use the CRPS as an overall performance measure and compare the average
CRPS values over all verification days and all left-out stations, separately for each
of the 10 different setups. In order to see how much accuracy is lost due to the need
for interpolation of mean and variance parameters, we also give the results that are
obtained when local observations at the left-out locations are available, and as, bs

and ξ2
s can be found as described in Section 3. The plots in Figure 4 suggest that

the additional uncertainty due to interpolation has about the same magnitude as
the meteorological uncertainty about the weather situation, which emphasizes the
importance of a good interpolation scheme. From the boxplots in Figure 6 we can
see that there are substantial differences in the predictive performance of the prob-
abilistic forecasts obtained with the different GRF models. Using an intrinsically
stationary model like the Brownian surface, without addressing the systematic re-
gional differences and the strong small-scale variability of μs and σ 2

s , does not give
an appropriate description of the spatial dependence structure, and entails poor in-
terpolants of the predictive distributions. The fractional Brownian surface model,
in spite of being more flexible, has the same deficiencies as the Brownian surface
model and does not improve the predictions. Using the annual mean wind speeds
for locally rescaling the mean and variance parameters, on the contrary, results in
a distinctly superior interpolation scheme, and narrows the performance gap be-
tween the predictive distributions obtained by interpolation and those obtained by
local calibration. The added dimension further improves the interpolation accuracy
and yields the best predictive performance of all four interpolation schemes.

5.3. Calibration of predictive means and variances. The aim of the method-
ology proposed in Section 4 is to produce calibrated predictive distributions for
wind speed at any desired location within the forecast domain. The post-processing
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FIG. 7. PIT means and MADs for the raw ensemble CDFs and the truncated logistic CDFs for
wind speeds at UTC 1800, the latter being interpolated using the scaled Brownian surface model
with an added dimension. Calibration stations are depicted as circles, left-out stations are depicted
as triangles.

methods presented in Section 3 aim at adjusting predictive means and variances at
observation locations, and Figure 5 suggests that this is done quite successfully.
Do the elimination of (local) biases and the correct representation of forecast un-
certainty also carry over to locations where no local observations are available, and
predictive distributions are obtained through interpolation? To assess this, we study
again PIT values, but we no longer pool over different locations since converse lo-
cal biases may cancel each other out. Instead, we study calibration separately for
each location and summarize the information in the PIT histograms by consider-
ing only two statistics of the local PIT values: their mean and their mean absolute
deviation (MAD) from 0.5. If the forecasts are calibrated, these two quantities
should be close to 0.5 and 0.25, respectively. A PIT mean larger/smaller than 0.5
is indicative for an under-/overforecasting bias. If the forecasts are unbiased but
strongly overdispersive, the PIT values would be concentrated around 0.5, and the
mean absolute deviations from this value would be close to zero. Conversely, if the
forecasts are strongly underdispersive, the PIT values are concentrated near zero
and one, and the MAD would be close to 0.5. A similar idea of reducing the in-
formation in a PIT histogram was proposed by Keller and Hense (2011), who fit a
beta distribution to each histogram and define a β-bias and a β-score which char-
acterize the histogram shape. The main difference is that our approach does not
involve a parametric approximation to the PIT histogram but estimates the mean
and MAD of the PIT values directly. Apart from a reduction of information, focus-
ing on those two summary statistics has the advantage that meaningful values can
be calculated with relatively few PIT values and thus compensate for the reduc-
tion of the verification sample size due to not pooling the PIT values over different
stations.

Figure 7 depicts the two PIT summary statistics at both used and left-out sta-
tions in the first of our 10 randomly generated setups. We compare the results
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for the raw ensemble and predictive truncated logistic distributions at 1800 UTC
using our best performing interpolation model (d). The plots for the raw ensem-
ble CDFs confirm our conclusion from the exploratory analysis that the ensemble
forecasts are strongly underdispersive, and suffer from local biases that vary over
the forecast domain. At the observation locations, our post-processing method re-
moves those biases completely and yields an adequate representation of the fore-
cast uncertainty. At locations where predictive distributions are obtained through
interpolation, biases are mostly reduced but could not be eliminated completely,
which underscores the difficulty in calibrating forecasts in the absence of local ob-
servations. However, our interpolation scheme is able to quantify this interpolation
uncertainty, and adding the kriging variance to the interpolated forecast variance
leads to an adequate representation of forecast uncertainty at almost all locations
of left-out stations.

6. Discussion. We presented a method for post-processing ensemble forecasts
of wind speed which can strongly improve the local calibration of raw ensemble
forecasts, even at locations where no observations are available for calibration.
Three different types of predictive distributions—truncated normal, gamma and
truncated logistic—were studied, and were found to perform similarly in our data
example with some advantages for the truncated logistic distribution, which turned
out to give the most adequate representation of predictive uncertainty in the tails.
In order to obtain predictive distributions at nonobservational locations, we used
geostatistical methods to interpolate the mean and variance parameters of the pre-
dictive distributions at surrounding observation locations. Our results show that
careful statistical modeling is required to formulate an adequate model for spatial
dependence. In our case, the thoughtful use of gridded data on mean annual wind
speeds was a key step toward a strongly improved interpolation scheme.

The forecasts and observations considered here were for surface wind speeds
which are relevant, for example, for severe weather warnings or airport manage-
ment. For wind power applications, wind speeds at hub height would be more
relevant, and our approach needs to be tested in this latter context, too. While con-
siderably less observations are available at hub height, the wind speed fields are
smoother and less affected by land cover or the shape of the terrain. We expect that
our geostatistical modeling approach could again be used successfully for gener-
ating calibrated gridded forecasts, and we believe that the methods presented here
can help improve, for example, the prediction of the total regional wind energy
production based on ensemble wind speed forecasts and a few local observations.

APPENDIX A: CRPS FOR GAMMA DISTRIBUTIONS

To derive a closed form expression for the CRPS of the gamma distribution, we
first note that the CRPS can also be written as

CRPS(F, y) = EF |X − y| − 1
2EF

∣∣X − X′∣∣
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[Gneiting and Raftery (2007)], where X and X′ are independent random variables
with cumulative distribution function F and finite first moment. For gamma dis-
tributions G(α,β), the first term can be integrated out using the properties of their
density fα,β , yielding

EFα,β |X − y| =
∫ y

−∞
(y − t)fα,β(t) dt −

∫ ∞
y

(y − t)fα,β(t) dt

= y

∫ y

−∞
fα,β(t) dt − α

β

∫ y

−∞
fα+1,β(t) dt

− y

∫ ∞
y

fα,β(t) dt + α

β

∫ ∞
y

fα+1,β(t) dt

= y
(
2Fα,β(y) − 1

) − α

β

(
2Fα+1,β(y) − 1

)
,

where we have used that �(α + 1) = α�(α), with � denoting the gamma function.
The second term in the above CRPS representation can be calculated by using its
relation to the Gini concentration ratio G [e.g., McDonald and Jensen (1979)]:

EFα,β

∣∣X − X′∣∣ = 2α

β
G = 2α

β

�(α + 1/2)√
π�(α + 1)

.

Putting both terms together, replacing the fraction of gamma functions by a beta
function and using �(1

2) = √
π , yields the expression stated in Section 3.

APPENDIX B: CRPS FOR TRUNCATED LOGISTIC DISTRIBUTIONS

For this calculation we take the same approach as Friederichs and Thorarins-
dottir (2012) for generalized extreme value distributions and use the quantile score
representation of the CRPS:

CRPS(F, y) = 2
∫ F(y)

0
τ
(
y − F−1(τ )

)
dτ − 2

∫ 1

F(y)
(1 − τ)

(
y − F−1(τ )

)
dτ.

If we denote by FL(μ,ς) the CDF of the logistic distribution and let p0 =
FL(μ,ς)(0), the quantile function of the truncated logistic distribution is given by

F−1
L0(μ,ς)(τ ) = μ + ς logit

(
p0 + τ(1 − p0)

)
.

After plugging this into the above quantile score representation of the CRPS and
performing integration by substitution, we obtain

CRPS(FL0(μ,ς), y)

= (y − μ)

(
2py − 1 − p0

1 − p0

)

− 2ς

(1 − p0)2

∫ py

p0

(τ − p0)logit(τ ) dτ + 2ς

(1 − p0)2

∫ 1

py

(1 − τ)logit(τ ) dτ,
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where py = FL(μ,ς)(y). The two integrals can be calculated using

2
∫

(τ − p0)logit(τ ) dτ = (
τ 2 − 2p0τ

)
logit(τ ) + (1 − 2p0) log(1 − τ) + τ,

2
∫

(1 − τ)logit(τ ) dτ = −(1 − τ)2logit(τ ) + log(τ ) − τ,

and after some rearrangement and simplification we finally obtain the expression
stated in Section 3.
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